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In theoretical investigations attention is devoted chiefly to the use of
sither crossed magnetic and electric fields[1,2,3.4 ] or running mag-
netic fields {5,6,71].

Below we investigate driving an incompressible electrically-conduct-
ing fluid by means of constant transverse and time-varying longitudinal
magnetic fileld.

In Section 1 we consider the unsteady flow of a viscous incompressible
conducting medium in a plane channel provided with a homogeneous trans-
verse magnetic field, where the motion arises as a result of a variable
longitudinal magnetic field penetrating the fluid from the walls. The
general solution of the problem is found by means of the Laplace trans-
form, In the case of a linear variation with time of the intensity of
the external longitudinal field, a simple

formula is found expressing the speed and mag- £

—— =8, (1)

netic and electric field intensities at a 8,
cross-section of the channel for the limiting s A
regime of uniform motion of the medium. v

A detailed investigation of the transition A /0 ’ - Z

regime is carried out in Section 2, where the
analogous problem is studied for an inviscid

fluid. Here it is shown that for sufficiently Fig. 1.

small values of the magnetic Reynolds number the transition regime has

an aperiodic character. The case of uniformly accelerated motion of the
medium is also considered.

In Section 3 we investigate driving an inviscid conducting fluid in a
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channel of annular cross-section.

In view of the complexity of the resulting equations, results are de-
duced only for the limiting regime of uniform motion.

1. Driving a viscous fluid in a plane channel. We consider
the following problem. An infinitely long plane channel of height a is
filled with an incompressible viscous electrically conducting fluid. The
upper wall of the channel is assumed to be nonconducting and the lower
wall ideally conducting. There exists a homogeneous transverse magnetic
field B, parallel to the x-axis (Fig. 1).

At time t = 0 a homogeneous magnetic field By (t) is created parallel
to the z-axis in the vicinity of the upper wall, whose variation is
assumed known. As a result of penetration of this magnetic field into the
fluid there is induced in it an electric field Ey and current jy.

The transverse magnetic field B, and current j, produce a field of
body forces, under whose action the conducting fluid is set into motion.

Ve will assume for simplicity that the physical properties {p, 7, o)
of the fluid are constant, and that the magnetic permeability g is equal
for the fluid and the walls. We assume also that the displacement current
may be neglected (cf. [8 ], pp. 237, 270).

Then in the region of the upper wall the magnetic field is described
by the equations

rot B¥ = 0, div B* = 0 (x> a) (1.1)

and in the region occupied by the fluid the behavior of the field and
the medium is determined by the equations

a . .
p%ZWVp+JXB+nLQV, divv =0
j:%mm:s(E-{»va), divB =0 (1.2)
rotE=—2  0<s<a)

Since in the problem under consideration all quantities depend upon
only the one coordinate x, we obtain from the system (1.1) to (1.2) the
relations

h:}:* = 13 hz* = ho (T) E>1) (1.3)
au ah 1 %u . oh ok de v
6_~c:6u§+72_5-§§’ ]::-—a—ngm(eJru), el O<E<Y

(1.4)
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Here dimensionless variables have been introduced according to

v tv B -
==, =2, 1=, h=_ (1.5
2 a a Bo
E, naj pv,a
Ty y _ P .
€ == Bo”a’ = By ’ R = n y Rm = CUvqa

(vy= By /v (pp) 1s the speed of Alfven waves)

The system (1.4) is to be solved under the following initial and
boundary conditions:

u=0, h=0, e=0 forr=10 (1.6)
u=0, e=0, for t>0, £=0
u=0, h=h(1) for 1> 0, E=1 (1.7)

Applying the Laplace transformation to Equations (1.4) we obtain

dH 1t d2U dH dl
U=t 20 pe M RE ), pH=—" (1Y)
where the boundary conditions (1.7) take the form
E=U=0 for £ =0
H=H, U=0 for £ =1 (1.9)

From the system (1.8) we find by elimination the following equations
for the transform of the speed:

AU a2U
ae0 — Ry + (R 4 Ry) pl g T iknp?U =0 (1.10)
where RR,, = B(,:ﬂs =M? (M = Hartmann number)

Solving Equations (1.10) and determining the constants of integration
from the boundary conditions (1.9), we obtain the following formulas for
the transforms of the speed and field intensities:

U—H sinh N ainkin £ —sinh nsinhin §
— e n? \sinhm coshn m2 )n’izhneoibm (1.11)
( - 7?> n <p - R m
(p ﬁz_)smhmcochn t ( ﬁ)zmb neoshin &
- R n - - R m I3
H=H,~ n? \sinhm coth 1 m? \ainh 1 coshm (1.12)
(p - 7?~> n - (p - R m
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(p _ A* \sishm sinhnf - (p . _f)sinhn sinhm g
F— pHo s R i n? s R m?
(p . ﬁi)linhm toshn _( B m_z)sinhn cosh !
R/ 7 p R m
where {1.14)

o= 3|/ RBn + (VR + VR p -+—|/RRm + (VR — VR ]
%[]/RR + (VR +VER.) p—y/ "RR.. + (VR —VR.) P%

(1.13)

The transformation is inverted using the inversion formulas

1 1 1 -
uxz—t—iSUexpprdp, iz:z_m:SHexp prdp, exESEeXPPTd}? (1.15)
L L L

We restrict ourselves further to the case when the intensity of the
external magnetic field varies according to the law hy = ar (H; = a/p?).
Since U, H and E are then functions of p whose sign does not change,
their inversions are found by summation of the residues at the poles
p=0, p= p,., where the p, are the roots of the denominator in Equa-
tions (1.11) to (1.13).

An investigation of these roots was carried out by the authors in
{9 ], where an approximate expression was obtained for them. Here we
give only the formulas for the limiting regime of uniform motion of the
fluid, which are found by calculating the residues at the pole p = 0:

uo __ LsinhM —sinhM § he T M (coshd] —cosh ME) (1.16)
sinh M ’ a Rsinn M o
e Jo sinh ]VIE
o &, a ™ sish M

Thus by means of crossed magnetic fields — a uniform transverse one
and a longitudinal one that increases linearly with time — it is possible
to create a uniformly moving stream of fluid.

2. Driving an ideal fluid in a plamne channel. We consider
the problem posed in Section 1 for the case of an inviscid electrically
conducting fluid. With n = 0 the system of equations (1.8) takes the form

aH — — 9.

where the boundary conditions are the following:
E=0 for {=0, H=H, for§—=1 {2.2)

pU =
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From (2.1) we find the equation
&H 7

g e R,

H=0 (2.3)

whose solution we write in the form

pE

W:};_/M—‘T +C, si’nmw—pg:~ {2.4)

Vi+riR,

Finding expressions for U and E from (2.1) with the use of (2.4), and
determining the constants of integration by means of the boundary condi-
tions (2.2), we obtain the following equations for U, H and E:

H = ¢, cost

— If{; Slnhﬂg

E:’““Hol‘i‘f“p/Rm:i’:’%g (ﬁzl—/?fp;-“/‘“’“r)

Let hy = ar as above. Then the determination of u, h and e is reduced to
the calculation of the residues at the poles

m»nﬁg

H=H,_ (2.9)

N2 —
p = O’ plk 1’% + 55 ZR V;\'h - 4Rm (26)
M2 Mg e 2% 41
Pu=—gp — gV W AR (e =5w)

Performing the calculations, we obtain for the distributions of speed
and magnetic and electric field intensities in the fluid

w ksuxkkg Al
g*g—zgo("‘i) P("”‘gﬁ;)X
| ——————— _—_i_._—__sinh V}"h — 4R,;2 +-cosh V}‘dh — 4R, )
| Y R2—AR 2
(2.7)
B Acos?ui,‘g { A2
Ewr—éRmzo(wi) o exp\mz—}—?— X
X ~—<=::L::::r< inh }fk 4R2 2.8
Vi o i il 29

Ak e\ [ M

L sinh ( er:m;)] (2.9)

T=—EE2 2
k=0

_‘]/A,kz_ziR 2
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The first terms in Equations (2.7) to (2.9) represent the limiting
regime of uniform motion of the fluid, and the remaining terms the tran-
sitional regime. It follows from these results that for R, < w/4 the
transitional regime has an aperiodic character, whereas for R, > #/4 it
exhibits a finite number of damped oscillations.

It may be noted that here, in contrast with a viscous fluid, the
current density in the fluid is equal to zero for the regime of estab-
lished motion.

We consider also the case that the intensity of the external magnetic
field increases according to the law h; = Br?

For the limiting regime we obtain the relationships

4 o 1 l/ 9 w ’ o
%:Z('r*h—m—jg: %’-:1’2——1—{»5', _3_0_:__2;1,’ Zg:—c.
As is seen from Equations (2.10), in this case there is created with
the aid of crossed magnetic fields a uniformly accelerated stream of
fluid in the channel.

In concluding this section we note the following circumstance arising
from Equations (2.7) to (2.9): in the case of plane unsteady motion of
an ideal incompressible fluid in a constant transverse magnetic field,
the speed, and also the induced electric and magnetic fields, are repre-
sented by functions of the form*

= exp|ibe — g g YV AE— 4R, (2.11)

(where A is an arbitrary parameter), satisfying the equation

ef 1 ey o 5 1
oE? a R, oEor ot (2-12)

Solutions of this equation for the case of a half-space were con-

sidered in [10 1.

3. Driving an ideal fluid in a channel of annular cress-
section. We investigate now the possibility of driving an inviscid con-
ducting fluid in an infinitely long channel of annular cross-section,
which is formed by an inner ideally conducting cylinder of radius @ and
an outer nonconducting cylinder of radius b. There is a radial magnetic
field Br = Boa/r. Motion of the fluid arises as a result of penetration

* PFor R_ » o these solutions become Alfven waves.
n
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of a uniform longitudinal magnetic field B (t), which is created in the
vicinity of the outer cylinder by external annular currents.

The investigation of unsteady longitudinal motion of a viscous con-
ducting fluid in an annular channel in the presence of a radial magnetic
field presents significant mathematical difficulty. In[11] it was found
possible to integrate the appropriate equations only in the special case
of equal viscous and magnetic Beynolds numbers. We therefore restrict
consideration to the flow of an inviscid fluid. For the region occupied
by the fluid we have the following equations:

du 1. . oh CoLomy S d 3k .
fo—ti Jegemle ) die=—i e
Here
v, r v, B:
u_-;;, E—'a“, T= h:ﬁ; (3.2)
E .
— e F_ [obha , — Bo — cur
e = B, ! ;= By Vg = V!J»—é s R, = Sur.a

The initial and boundary conditions for the problem have the form

=0, h=0 e=0  forv=0 (3.3)
el =0, hlg=h()  for>0  (g=2) @34

a

Applying the Laplace transformation, we obtain from (3.1)

+

H U 1
pUz___ig]’ J:—ﬂ%E:Rm(E+—E—), -§{§—(§E> —pH  (3.5)

From this system we find for the transform H

Bo\?”H | 1, Rnp\dH .

(14 5) @+ £ (1) & — Rupit =0 >0
Substituting x = R v/ (1 + p¢ 2/’Rl'), we obtain the Bessel equation

®H | 1 dH -

E’f"“?ﬂ_f{: (3.7}

whose solution has the form
H = Cilo (2} + C2Ko {2) (3.8)

Determining C, aad C, from the transformed boundary conditions

dH

, et
=0 forﬁflezli‘(i'%—)/ H=H, tor v =u,— R (1+§i")°—

k2

(3.9
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we obtain the following expressions for the transforms U, H, E:

R_Hy R
U = ::A 11 (z) K1 (21) — 11 (a1) K1 (2)]
H =0 (1 (2) K1 (21) + It (a2) Ko ()] (3.10)
E=— HezVe (1 (2) Ky (2) — 11 (21) Ko (@)

, 2__ 11 2
where A VH’" (@ — f,?)

A = o (22) Ki (21) 1+ 11 (21) Ko (x2) (3.11)

Leaving aside the investigation of the transitional regime, we limit
ourselves to giving the formulas for the limiting regime of uniform
motion of the medium obtained in the case hy = ar :

U 1 29 ho €9
Lo fE@—D), Ler 2o g@—1) (3.12)

a
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